Small-correlation expansions for the inverse Ising problem

نویسندگان

  • Vitor Sessak
  • Rémi Monasson
چکیده

Abstract We present a systematic small-correlation expansion to solve the inverse Ising problem and find a set of couplings and fields corresponding to a given set of correlations and magnetizations. Couplings are calculated up to the third order in the correlations for generic magnetizations and to the seventh order in the case of zero magnetizations; in addition, we show how to sum some useful classes of diagrams exactly. The resulting expansion outperforms existing algorithms on the Sherrington–Kirkpatrick spin-glass model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact universal amplitude ratios for the planar Ising model and a quantum spin chain

Let fN and ξ −1 N represent, respectively, the free energy per spin and the inverse correlation length of the critical Ising model on N × ∞ lattice, with fN → f∞ as N → ∞. We obtain analytic expressions for ak and bk in the expansions: N(fN − f∞) = ∑ ∞ k=1 ak/N 2k−1 and ξ N = ∑ ∞ k=1 bk/N 2k−1 for square, honeycomb, and planetriangular lattices, and find that bk/ak = (2 2k−1)/(22k−1−1) for all ...

متن کامل

Approximating Partition Functions of Two-State Spin Systems

Two-state spin systems is a classical topic in statistical physics. We consider the problem of computing the partition function of the systems on a bounded degree graph. Based on the self-avoiding tree, we prove the systems exhibits strong correlation decay under the condition that the absolute value of “inverse temperature” is small. Due to strong correlation decay property, an FPTAS for the p...

متن کامل

Statistical mechanics of the inverse Ising problem and the optimal objective function

The inverse Ising problem seeks to reconstruct the parameters of an Ising Hamiltonian on the basis of spin configurations sampled from the Boltzmann measure. Over the last decade, many applications of the inverse Ising problem have arisen, driven by the advent of large-scale data across different scientific disciplines. Recently, strategies to solve the inverse Ising problem based on convex opt...

متن کامل

بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهم‌کنش نزدیکترین همسایه‌ها

 The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...

متن کامل

Some Exact Formulas on Long-Range Correlation Functions of the Rectangular Ising Lattice

We study long-range correlation functions of the rectangular Ising lattice with cyclic boundary conditions. Specifically, we consider the situation in which two spins are on the same column, and at least one spin is on or near free boundaries. The low-temperature series expansions of the correlation functions are presented when the spin-spin couplings are the same in both directions. The exact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008